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PREFACE

The goal of the second edition of Basic Pharmacokinetics and Pharmacodynamics is to

update and strengthen existing chapters of the book and to add additional chapters in

response to recent trends in the application of pharmacokinetics and pharmacodynamics

in clinical practice and pharmaceutical research.

Notable areas of update and expansion include both the text and the interactive computer

models associated with drug transporters and hepatic clearance. Additionally, the chapters

on drug absorption/bioavailability and pharmacodynamics have been updated, expanded

and strengthened to reflect the importance of these topics and the need to cover the material

both comprehensively and in a manner compatible with their present application. I felt

that these areas would be most effectively strengthened by experts in each of the fields.

To this end, I am delighted that Dr. Steven Sutton, who has had extensive experience as a

researcher in the pharmaceutical industry and as an educator at the College of Pharmacy,

University of New England, agreed to take over Chapters 3 and 9 that cover drug absorption

and bioavailability. I am also delighted that Drs. Diane Mould and Paul Hutson agreed to

revamp and expand the chapters on pharmacodynamics (Chapters 19 and 20). Dr. Mould of

Projections Research Inc is a well-known pharmacokinetic and pharmacodynamic modeler,

who has extensive experience in the application of pharmacodynamic models. Dr. Hutson

from University of Wisconsin, School of Pharmacy, is similarly experienced and was able

to provide an academic perspective to the overhaul of this material.

Owing to the increasing prominence of personalized and precision medicine, it has

become important that clinical pharmacists and researchers in pharmaceutical fields have

a basic knowledge of pharmacogenomics. Dr. Daniel Brazeau, an experienced educator

and researcher in this area from the College of Pharmacy, University of New England, gra-

ciously agreed to write an introductory chapter on pharmacogenetics for the second edition.

In response to the increasing use and diverse application of physiologically based pharma-

cokinetic (PBPK) modeling that has occurred over the last 15 years, it has become essen-

tial for modern students of pharmacokinetics to have a foundation in this topic. Chapter

18 introduces PBPK models and describes how they are built and applied. The third new
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2 INTRODUCTION TO PHARMACOKINETICS AND PHARMACODYNAMICS

1.1 INTRODUCTION: DRUGS AND DOSES

Drugs may be defined as chemicals that alter physiological or biochemical processes in the

body in a manner that makes them useful in the treatment, prevention, or cure of diseases.

Based on this definition, any useful drug must affect body physiology or biochemistry. By

extension, any useful drug must, if used inappropriately, possess the ability to do harm.

Drug action begins with administration of the drug (input) and concludes with the bio-

logical response (output, which can be a beneficial and/or an adverse effect). The inputs

(dose, frequency of administration, and route of administration) must be selected carefully

to optimize the onset, intensity, and duration of therapeutic effects for a particular disease

condition. At the same time, the inputs selected must minimize any harmful effects of drugs.

The design of optimum dosing regimens requires a complete understanding of the pro-

cesses and steps that translate the input into the output. It also requires an understanding of

how the input–output relationship may be influenced by individual patient characteristics

that may exist at the very beginning of therapy, as well as conditions that may arise during

the course of drug therapy. These will include the age and weight of the patient, the pres-

ence of other diseases, genetic factors, concurrent medications, and changes in the disease

being treated over time.

The material presented in this book will address and explain why, as shown in Table 1.1,

there is such tremendous variability in the value of drug doses and dosing frequencies

among therapeutic drugs. Additionally, it will address why different routes of administra-

tion are used for different drugs and different indications (Table 1.1).

The steps between drug input and the emergence of the response can be broken down into

two phases: pharmacokinetic and pharmacodynamic. The pharmacokinetic phase encom-

passes all the events between the administration of a dose and the achievement of drug con-

centrations throughout the body. The pharmacodynamic phase encompasses all the events

between the arrival of the drug at its site of action and the onset, magnitude, and duration of

the biological response (Figure 1.1). The rational design of optimum dosing regimens must

be based on a thorough understanding of these two phases and will, ideally, include the

development of one or more mathematical expressions for the relationship between dose

and the time course of drug response.

Optimum drug administration is important not only for ensuring good patient outcomes

in clinical practice, but also in the design of clinical trials during drug development. The

TABLE 1.1 Examples of Common Daily Doses and Dosing Intervals

Drug Daily Dose (mg) Dose Frequency (h) Route

Calcium carbonate 3000 2 Oral

Ibuprofen 1600 6 Oral

Vancomycin (for MRSAa) 2000 12 Intravenous

Amoxicillin 750 8 Oral

Vancomycin (for

pseudomembranous colitis)

1000 6 Oral

Atenolol 100 24 Oral

Fluoxetine 20 24 Oral

Ramipril 10 12 Oral

Digoxin 0.250 24 Oral

Chloroquine 300 Weekly Oral

aMethicillin-resistant Staphylococcus aureus.
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FIGURE 1.1 The two phases of drug action. The pharmacokinetic phase is concerned with the

relationship between the value of the dose administered and the value of the drug concentrations

achieved in the body; the pharmacodynamic phase is concerned with the relationship between drug

concentrations at the site of action and the onset, intensity, and duration of drug response.

cost of drug research and development is enormous, so it is critical that all drug candidates

selected for human trials are evaluated in the most efficient, cost-effective manner possible.

The application of pharmacokinetic and pharmacodynamic principles to this process has

been shown to enhance the selection of optimum doses and optimum designs of phase II

clinical trials.

1.2 INTRODUCTION TO PHARMACODYNAMICS

Pharmaco- comes from the Greek word for “drug,” pharmackon, and dynamics means “of

or relating to variation of intensity.” Pharmacodynamics (PD) is the study of the magnitude
of drug response. In particular, it is the study of the onset, intensity, and duration of drug
response and how these are related to the concentration of a drug at its site of action. An

overview of some basic drug terminology and the drug response–concentration relationship

is provided below.

1.2.1 Drug Effects at the Site of Action

Note that although some references and textbooks distinguish the terms drug effect and drug

response, this distinction has not been adopted universally. In this book, effect and response
are used interchangeably.

1.2.1.1 Interaction of a Drug with Its Receptor
Drug response is initiated by a chemical interaction between a drug and a special binding

site on a macromolecule in a tissue. This macromolecule is known as a drug receptor. The

drug–receptor interaction results in a conformational change in the receptor, which results in

the generation of a stimulus that ultimately leads to a biochemical or physiological response

(Figure 1.2). Most receptors (over 95%) are proteins; however, other types of receptors exist

such as the DNA receptors of the alkylating agents used in cancer chemotherapy. The drug–

receptor interaction involves chemical bonding, which is usually reversible in nature and

can be expressed using the law of mass action (Figure 1.2). Thus, at the site of action,

the drug binds to its receptor and equilibrium is established between the bound and the

unbound drug. As the drug is eliminated from the body and removed from its site of action,

it dissociates from the receptor, which is left unchanged, and the response dissipates.
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Cell membrane
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FIGURE 1.2 Drug–receptor interaction. Here, AG signifies a drug agonist, [D] is the free drug

concentration (not bound to the receptor), R is the concentration of free receptors, [RD] is the con-

centration of the drug–receptor complex, and kon and koff are the rate constants for the forward and

backward processes, respectively.

In contrast, a few drugs form irreversible covalent bonds with their receptors. For exam-

ple, aspirin inhibits platelet aggregation by inhibiting the formation of thromboxane in the

platelets. It accomplishes this by binding covalently to and blocking the catalytic activity

of cyclooxygenase, the enzyme that produces thromboxane. The effect of a single dose of

aspirin will persist long after the drug has been removed from its site of action and will

continue until new cyclooxygenase molecules are synthesized, which can then resume the

production of thromboxane. Other examples of drugs that bind irreversibly to their recep-

tors include the alkylating agents mentioned above and proton pump inhibitors, such as

omeprazole, which block the secretion of gastric acid by binding irreversibly to the H+,

K+-ATPase pumps of parietal cells.

The drug–receptor interaction is highly dependent on the chemical structure of both the

drug and the receptor and, therefore, small changes in the structure of the drug can reduce

or destroy activity. For example, the drug–receptor interaction can distinguish between the

R- and S-isomers of drugs that have chiral carbon atoms. Usually, one isomer is much

more active than the other. The S-isomer of warfarin, for example, is two to five times

more active than the R-isomer. The development and promotion of S-omeprazole (Nexium)

is based on the premise that the S-isomer has the higher affinity for the binding site and

thus offers therapeutic advantages over preparations containing racemic mixtures (equal

quantities of each isomer) of omeprazole, such as Prilosec and its generic equivalents.

Receptors are assumed to exist for all active endogenous compounds (natural ligands)

such as neurotransmitters and hormones. The interaction between natural ligands and their

receptors controls and/or regulates physiological and biochemical processes in the body.

In most cases, drugs mimic or antagonize the actions of endogenous ligands by interact-

ing with their cognate receptors. For example, epinephrine is a natural ligand that interacts

with β2-adrenergic receptors in bronchial smooth muscle to bring about bronchial dilation.

Albuterol, a drug, also interacts with this receptor to produce bronchial dilation. Acetyl-

choline transmits signals through a synapse by interacting with its nicotinic receptor found

on postsynaptic neuronal membranes. This interaction, which is mimicked by the drug nico-

tine, results in the production of a response called an action potential.

It should be noted that there are a few drugs that do not act on receptors but that exert their

action by bringing about physicochemical changes in the body. For example, conventional
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antacids, such as calcium carbonate, act as buffers to reduce acidity in the stomach and

polyethylene glycol, an osmotic laxative, acts by preventing the absorption of water in the

large intestine.

1.2.1.2 Postreceptor Events
Drugs almost always bring about some type of change in the intracellular environment
of cells, but the lipophilic cell membrane presents a physical barrier to most drugs and

endogenous ligands. As a result, most receptors are located on the cell membrane itself.

The stimulus generated from the interaction of the drug with the membrane bound receptor

has to be relayed to the inside of the cell. The relaying of the initial stimulus, known as

coupling or signal transduction, often involves a cascade of different steps during which

the initial signal may be amplified or diminished. Some important transduction mechanisms

are summarized below (see Figure 1.3).

1. Interaction of a drug with a receptor can lead directly to the opening or closing of

an ion channel that lies across a cell membrane. In this case, the signal is relayed

by changes in the ion concentration within the cell. For example, the interaction of

acetylcholine with its nicotinic receptor results in the opening of an ion channel allow-

ing Na+ to move into the cell thus, initiating the production of an action potential.

2. Signal transduction for a large number of drugs involves the activation of a G-protein
(guanine nucleotide-binding protein). The drug–receptor interaction on the mem-

brane triggers the activation of a G-protein on the cytoplasmic side of the mem-

brane, which then initiates a series of events that culminate in the biological response.

Activated G-protein can produce a variety of effects, including stimulation or inhi-

bition of enzymes, and the opening or closing of ion channels. These events usually

result in changes in the concentration of an intracellular compound known as the

AG

AG

Receptor

Drug

1                      2                               3                          4

AG
Opens ion

channels

Stimulates

a G-protein

Activates protein

kinase

Drug penetrates

the membrane

AG

FIGURE 1.3 Diagrammatic representations of how a drug receptor interaction brings about intra-

cellular events. The intracellular relay of the initial signal resulting from the interaction of a drug with

a membrane-bound receptor can be accomplished in one of three ways: (1) the direct opening of ion

channels; (2) the activation of a G-protein that may lead to the activation of another enzyme or to a

modulation of an ion channel; (3) the activation of protein kinase. Alternatively, (4), some drugs are

able to penetrate membranes and directly activate intracellular receptors.
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second messenger. Examples of second messengers include cyclic adensine-3′,5′-
monophosphate (cAMP), calcium, and phosphoinositides. The second messengers

then relay the response further through a series of complex steps. For example, the

interaction of catecholamines such as norepinephrine with certain β-receptor sub-

types involves G-protein activation. This then stimulates adenylate cyclase to con-

vert adenosine triphosphate to cAMP, which acts as the second messenger. Subse-

quent events include the stimulation of specific protein kinases, activation of calcium

channels, and modification of cellular proteins. Other examples of G-protein–coupled

receptors are the action of acetylcholine on its muscarinic receptors and the action of

serotonin on its 5-HT receptors.

3. The interaction of a drug with its receptor can also result in the stimulation of a

receptor-associated enzyme, tyrosine kinase. The activated tyrosine kinase phospho-

rylates key macromolecules, which are often a part of the receptor itself, to relay

the signal. Insulin and peptide growth factors, for example, use this form of signal

transduction.

Some drugs are lipophilic enough to penetrate the cell membrane, while others may be

transported across the cell membrane by uptake transporters. Drugs that are able to enter a

cell can interact directly with intracellular receptors. Examples of drugs that act on intra-

cellular receptors include many steroids such as glucocorticoid steroids, sex hormones, and

thyroid hormones. The HMG-CoA reductase inhibitors (commonly known as statins) and

metformin also act within the cell (hepatocyte) and both are dependent on uptake trans-

porters to deliver them to the intracellular space and their site of action.

1.2.2 Agonists, Antagonists, and Concentration–Response Relationships

A drug that mimics the endogenous receptor ligand to activate the receptor is referred to as

an agonist. The typical relationship between the drug effect and the agonist concentration at

the receptor site is shown in Figure 1.4a. Note that as the concentration of the drug increases,

the effect increases. At low concentrations, there is a linear relationship between concen-
tration and effect (i.e., the response is proportional to the concentration). At higher drug

Response Response

Concentration Logarithm concentration

(a) (b)

Maximum
response

Maximum
response

FIGURE 1.4 Plots of response versus drug concentration: (a) on a linear scale and (b) on a semilog-

arithmic scale.
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concentrations, increases in concentration bring about much smaller changes in effect

(the law of limited returns). Eventually, at very high concentrations, the effect achieves a

maximum value and then remains constant and independent of concentration. In this area

of the curve, increases in concentration will not result in further increases in response. This

relationship is observed because response is generated by a saturable, capacity-limited

process. For example, the response may be limited by the number of receptors that a

tissue contains. At low drug concentrations, there are many free receptors and as the

drug concentration increases, the drug can bind to the free receptors and response can

increase proportionally. At higher concentrations, more and more of the receptors are

occupied. As a result, increases in the drug concentration produce much less increase in

effect. Eventually, all of the receptors are occupied (or saturated) and a maximum effect is

observed. To accommodate a wide range of concentrations, the relationship between effect

and concentration is usually plotted on a semilogarithmic scale, which transforms the plot

to a sigmoidal shape (Figure 1.4b).

Many agonists are able to produce the system’s maximum response without fully occu-

pying all the receptors. In these systems, the maximum response of the drug must be the

result of some other saturable, capacity-limited process that occurs after receptor binding.

These tissues or systems are said to have spare receptors. Experimentally, the presence of

spare receptors can be demonstrated by destroying some of the receptors. If an agonist is

still able to produce a maximum response, the system must contain spare receptors.

The efficiency with which a drug’s interaction with the receptor is converted into the

initial stimulus or biosignal is a function of the number of receptors at the site of action and

a drug’s intrinsic efficacy. Intrinsic efficacy can be defined as the magnitude of the stimulus

produced per unit receptor occupied. The value of the stimulus that results from a specific

concentration of a drug is also a function of the drug’s affinity for its receptors. Affinity can

be defined as the extent or fraction to which a drug binds to receptors at any given drug

concentration. Drugs that have high affinity require less drug to produce a certain degree of

binding and to elicit a certain response compared to drugs with low affinity. Affinity is one

of the factors that determines potency (see Chapter 19).

A drug that binds to a receptor but does not activate it is referred to as an antagonist.
The presence of an antagonist at the receptor site blocks the action of the agonist (Fig-

ure 1.5). Higher concentrations of the agonist are needed to displace the antagonist and to

produce the effect that is elicited when the antagonist was absent. The antagonist shifts the

concentration–response curve of an agonist to the right (Figure 1.6). At sufficiently high

concentrations of the antagonist, the agonist’s action may be blocked completely and the

effect of even high concentrations of the agonist is reduced to zero. Some drugs bind to

AG

ATG

Cell membrane

Receptor

AG

ATG

FIGURE 1.5 Diagrammatic representation of the action of an antagonist. The antagonist (ATG)

binds to the receptor but does not produce a signal. Its presence on the receptor blocks the action of

agonists (AG), including the natural ligand.
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Response to

an agonist

Logarithm of agonist concentration 

Increasing concentration
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No antagonist

FIGURE 1.6 Plot of response versus logarithm concentration for an agonist in the absence and

presence of increasing concentrations of an antagonist.

receptors, but the binding is less efficient and a full response cannot be achieved even when

the drug’s concentration is very high and all the receptors are occupied (Figure 1.7). These

drugs are referred to as partial agonists. A partial agonist will block the effect of a full ago-

nist. In the presence of high concentrations of a partial agonist, the action of a full agonist

can be reduced to the maximum response elicited by the partial agonist. Clinically, partial

agonists are used to act as buffers to avoid full stimulation of a system. Examples of partial

agonists include several β-blockers, including pindolol, and the opioid buprenorphine. The

latter is a partial agonist on the μ-opioid receptors and is considered a safer alternative to

morphine because it does not produce as much respiratory depression (see Chapter 19).

In summary, drug action is mediated primarily by the interaction of a drug with

membrane-bound receptors at its site of action. This produces conformational changes in

the receptor, which lead to the generation of an initial signal. The signal is then relayed to

the intracellular environment by means of a variety of transduction processes. The response

increases with increases in drug concentration until enough receptors are occupied to gen-

erate the maximal response. The response to a specific concentration of drug is dependent

on drug-specific properties (e.g., intrinsic efficacy and affinity) and tissue-specific prop-

erties (e.g., number or density of receptors and amplification or diminution of the initial

signal during transduction). An important goal in a study of pharmacodynamics is to derive

Response

Logarithm of concentration

Full agonist

Partial agonist

FIGURE 1.7 Plot of response versus logarithm concentration for a full and a partial agonist.
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a mathematical expression for the magnitude of drug response as a function of drug con-

centration:

E = fPD (C) (1.1)

where E is the drug effect or response, C is the drug concentration, and fPD is a pharmaco-

dynamic function that links these two variables and contains the drug-specific parameters

of intrinsic efficacy and affinity. In equation (1.1), E is the dependent variable because it is

dependent on all the other components of the equation. The drug concentration at the site

of action (C) is the independent variable because it is independent of all the other compo-

nents of equation (1.1). This expression would allow the effect to be estimated at any drug

concentration and allow the required concentrations for optimum response to be identified.

1.3 INTRODUCTION TO PHARMACOKINETICS

Pharmaco- comes from the Greek word for “drug,” pharmackon, and kinetics comes from

the Greek word for “moving,” kinetikos. Pharmacokinetics (PK) is the study of drug move-
ment into, around, and out of the body. By extension, it involves the study of drug absorption,
distribution, and elimination (metabolism and excretion) (ADME).

Pharmacokinetics involves the study of how drugs enter the body, distribute throughout

the body, and leave the body. It is concerned with the driving forces for these processes

and the rate at which they occur. Pharmacokinetics is the study of the time course of drug
concentrations in body compartments. From a therapeutic perspective, the drug concentra-

tion at the site of action is by far the most important: Concentrations should be sufficiently

high to produce a response but not so high as to produce toxicity. Since it is not possible to

routinely measure this concentration clinically, the plasma concentration of the drug is the

main focus in pharmacokinetics. It is often assumed that the plasma concentration reflects
the drug concentration at the site of action. This is generally true and the relationship is

often linear. Increases or decreases in the plasma concentration will be reflected by pro-

portional increases or decreases at the site of action, respectively. However, as discussed in

subsequent chapters, this is not always the case and a more complex relationship between

these two concentrations may exist. It is important to note that although changes in the

plasma concentration will usually result in proportional changes in the drug concentration

at the site of action, the reverse is not true. Because the amount of drug that is delivered to

the site of action is usually such a very small fraction of the total amount of drug in the body

(in other tissues and the systemic circulation), local changes in the amount of drug at the

site of action are generally not reflected by noticeable changes in the plasma concentration.

1.3.1 Plasma Concentration of Drugs

As stated above, pharmacokinetics is concerned with the body’s exposure to a drug and how

drug concentrations change over time. For the most part, drug concentrations in the plasma

are the focus in pharmacokinetics. The rationale for this is twofold. First, blood is one of

the few body fluids that can be obtained and analyzed repeatedly for drug concentrations at

specified times after the administration of a dose. The concentration of drug in whole blood

is not commonly used in pharmacokinetics because blood is a complex physical system

that consists of red blood cells, white blood cells, and platelets suspended in plasma water.

Blood with the cellular elements removed, either by centrifugation (plasma) or clotting


